MOHAMAD DHAYBI

Electrical Engineer/ Research Assistant

@ mad54@mail.aub.edu

**** 71-489934

♀ Beirut, Lebanon

in /www.linkedin.com/in/mohamad-dhaybi-36031a143

EDUCATION

Master of Engineering: Control Systems and Machine Intelligence (Electrical and Computer Engineering) GPA: 90.16/100

American University of Beirut

⋒ 09/2017 − 08/2019

Bachelor of Engineering: Electrical and Electronics Engineering GPA: 4/4

Lebanese university (Université Libanaise)

1 09/2012 - 07/2017

EXPERIENCE

Research Assistant on Quadcopter Robot

American University of Beirut

02/2018 - Present

♥ Beirut, Lebanon

- Working on a project entitled: "Real-time estimation of Mass and Inertia tensor of Quadcopters for Controller Mapping".
- Applied real-time estimation of Quadcopter's parameters using Recursive Least Squares with adaptive controller Design.
- Simulation on Matlab/Simulink.
- Implementation on Quanser quadcopter Hover and Qball2 quadcopter.

Teaching Assistant

American University of Beirut

1 09/2017 - 06/2019

♥ Beirut,Lebanon

- Electronic circuits laboratory
- System integration laboratory
- Electric Machines and Power Fundamentals course

Electronic Design, Manufacturing and Programming of Robots

Laboratoire d'Ingénierie des Systèmes de Versailles (LISV), Université Paris-Saclay

02/2017 - 07/2017

Paris,France

- Designed electronic Printed Circuits Boards (PCBs) containing micro-controllers such as STM32, Atmega328p on EagleCAD software to control the motors of a humanoid robot head.
- Chosen electronic components with specific dimensions, communicated with European suppliers for electronic components purchase, and integrated the adequate sensors used for motors position control.
- Designed a daisy chain for communication between the robot's nodes (sensors, actuators) using I2C.
- Applied high level control of the robot using Arduino IDE and Robot Operating System (ROS) installed on a Raspberry Pi.

PROJECTS

Mobile Robot Design and Control by Teleoperation

- Designed and built a mobile robot with a 3D printed robotic manipulator putted on its front.
- Sending orders to the robot via WIFI after detection of human hands specific movements by a Kinect camera.

Quanser quadcopter Hover System Analysis and Design

 Used state space analysis to model the Hover system and to design an adequate Linear Quadratic Regulator (LQR) controller.

Hydrogen Filling Station

 Designed a Hydrogen Filling Station powered by solar energy on Matlab/Simulink.

Arabic Image Captioning

 Use machine Learning and Computer vision to perform Arabic image captioning.

Robust Seizure Prediction

 Used Deep Learning to predict seizures for Epilepsy patients.

Servo Motor Control

 Applied the control of an LS-Mecaption servo motor in speed and position mode using a PLC programmed by XG5000 software.

Database Project

 Airlines Reservation System: Developed a C# & SQL application that manages the flights, the costumers reservations and the traveling trips departure and arrival timing of an airlines company.

Programming Project

Optimum University Schedule Generator: Developed a C# Application developed with
Visual Studio that uses Genetic Algorithm (GA)
to find the optimum schedule for the faculty
members of a university based on timing and
availability constraints.

PUBLICATIONS

Real-time Estimation of the Inertia Tensor Elements of a Quadcopter Hover Platform

 Published and presented in IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2019 - Hong Kong, China).

Arabic Image Captioning Using Deep Learning

 Submitted to International Conference on Computer Vision (ICCV 2019).